![]() 张丰收
男, 博士, 教授,博导
1982年8月生, 湖南涟源
教育部长江学者特聘教授(2021),国家海外高层次人才计划青年人才(2016)
![]() ![]() ![]() ![]() 主要研究方向:
深地工程岩石力学;裂隙岩体水力压裂;二氧化碳地质封存与能源存储;极端环境岩土力学;隧道及地下工程
|
2007-2012 georgia institute of technology 博士学位 2004-2007 同济大学土木工程学院地下建筑与工程系硕士学位 2000-2004 同济大学土木工程学院本科
2022/1—现在 同济大学同济特聘教授、教育部长江学者特聘教授 2021/3—2023/2 国家自然基金委员会地球科学部流动项目主任 2020/7—2021/12 同济大学长聘教授 2016/9—2020/6 同济大学教授 2012/8-2016/8 美国itasca咨询公司地质力学工程师
近年主持科研项目: [1] 腾讯首届碳寻计划项目,东部近海玄武岩二氧化碳矿化封存,主持,2024年 [2] 国家重点研发计划政府间国际科技创新合作项目,页岩储层安全碳封存基础理论与关键技术,主持,2023年 [3] 国家自然科学基金重点国合项目,深层高温高压页岩水力压裂特性与诱发地震机理研究,主持,2023年 [4] 同济大学学科交叉联合攻关项目,月球岩土材料的摩擦特性及其孕灾机理研究,主持,2022年 [5] 国家重点研发计划子课题,原位尺度气液驱动缝网扩展多场耦合模型和可压裂性评价技术,主持,2021年 [6] 上海高峰高原学科,基于人工智能和多尺度信息融合的非常规储层“甜点”预测及水力压裂优化,主持,2021年 [7] 国家自然科学基金面上项目,流体注入引起的深部页岩断层激活与滑移变形机理研究,主持,2020年
近年主持企业委托项目: [1] 中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,企业委托项目,吴起长8等扩边区水平井改造工艺综合评价及关键参数优化项目,主持,2024年 [2] 中煤科工开采研究院有限公司,企业委托项目,曹家滩煤矿顶板砂岩水力压裂实验与区域压裂卸压仿真服务,主持,2023年 [3] 中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,深层页岩气区页岩储层摩擦特性及解释方法研究技术开发,主持,2023年 [4] 中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,页岩气立体开发压裂优化研究,主持,2022年 [5] 中国石油集团工程技术研究院有限公司,企业委托项目,固液耦合数值模拟算法测试,主持,2022年 [6] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,基于有限元算法裂缝扩展模块开发,主持,2022年 [7] 中海油能源发展股份有限公司工程技术分公司,企业委托项目,工技公司目标油藏化学、物理扩容增效技术性能测试服务,主持,2022年 [8] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,高温高压条件下的岩石力学性能与断裂演化机理,主持,2022年 [9] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,油气水三相渗流-热场-力学耦合三维有限元地应力演化模型开发,主持,2022年 [10] 中国石油天然气股份有限公司勘探开发研究院,非常规储层岩石力学性能演化机理及剪切裂缝导流能力研究,主持,2022年 [11] 中国石油天然气股份有限公司勘探开发研究院,高温高压条件下的岩石力学性能与断裂演化机理研究,主持,2022年 [12] 中国石油天然气股份有限公司西南油气田分公司,企业委托项目,川南深层页岩储层天然裂缝剪切渗流及其稳定性分析,主持,2021年 [13] 中国地质科学院地质力学研究所,企业委托项目,青海共和盆地干热岩诱发地震剪切渗流测试,主持,2021年 [14] 上海市地矿工程勘察院,企业委托项目,上海典型土层温度-应力本构关系及温度-渗流-应力耦合数值模拟,主持,2021年 [15] 中国石油天然气股份有限公司长庆油田分公司,企业委托项目,扇形井网水平井体积压裂优化设计研究,主持,2021年 [16] 中国石油天然气股份有限公司西南油气田分公司,企业委托项目,页岩气井四维地应力演化机理及分布特征研究,主持,2021年 [17] 中海油能源发展股份有限公司工程技术分公司,企业委托项目,西江油田井扩容方案设计和实时监测分析,主持,2021年
[1] jiang, x., zhang, f., huang, b*., titi, h., polaczyk, p., ma, y., wang, y., cheng, z. (2024). “full-scale accelerated testing of geogrid-reinforced inverted pavements”, geotextiles and geomembranes, 1-15. https://doi.org/10.1016/j.geotexmem.2024.01.005 [2] zhou, z., zhang, f*., fu, h., xiu, n., guan, b., cai, b. (2024). “a thermal–mechanical coupled dem model for deep shale reservoir: the effects of temperature and anisotropy”, rock mechanics and rock engineering, 1-20. https://doi.org/10.1007/s00603-023-03756-8 [3] zhong, z., xu, c., hu, y., zhang, f., wu, f., li, b*. (2024). “frictional strength and sliding behaviors of an analogue rock-fault structure: a laboratory study”, international journal of rock mechanics and mining sciences, 174, 105665. https://doi.org/10.1016/j.ijrmms.2024.105665 [4] liu, c., detournay, e*., zhang, f. (2024). “finite domain solution of a kgd hydraulic fracture in the viscosity-dominated regime”, rock mechanics bulletin, 3 (1), 100095. https://doi.org/10.1016/j.rockmb.2023.100095 [5] hou, l., elsworth, d., wang, j., zhou, j., zhang, f*. (2024). “feasibility and prospects of symbiotic storage of co2 and h2 in shale reservoirs”, renewable and sustainable energy reviews, 189, 113878. https://doi.org/10.1016/j.rser.2023.113878 [6] li, m., zhang, f*., wang, s., dontsov, e., li, p. (2024). “dem modeling of simultaneous propagation of multiple hydraulic fractures across different regimes, from toughness- to viscosity-dominated”, rock mechanics and rock engineering, 57(1), 481-503. https://doi.org/10.1007/s00603-023-03554-2 [7] wang, y., zhang, f*., liu, f., wang, x. (2024). “full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, acta geotech, 19(1), 401-415. https://doi.org/10.1007/s11440-023-01904-6 [8] zhong, z., meng, x., hu, y., zhang, f., wu, f., wang, g*. (2023). “quantitative assessments on fluid flow through fractures embedded in permeable host rocks: experiments and simulations”, engineering geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341 [9] zhong, z., meng, x., hu, y., zhang, f., wu, f., wang, g*. (2023). “quantitative assessments on fluid flow through fractures embedded in permeable host rocks: experiments and simulations”, engineering geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341 [10]zhong, z., xu, c., zhang, f., wang, x., hu, y*. (2023). “size effect on hydraulic properties of rough-walled fractures upscaled from meter-scale granite fractures”, geomechanics and geophysics for geo-energy and geo-resources, 9(1), 75. https://doi.org/10.1007/s40948-023-00606-3 [11]feng, r., luo, h., chen, z., zhang, f*. (2023). “integrated microseismic and geomechanical analysis of hydraulic fracturing induced fault reactivation: a case study in sichuan basin, southwest china”, geomechanics and geophysics for geo-energy and geo-resources, 9(1), 48. https://doi.org/10.1007/s40948-023-00586-4 [12]cui, l., zhang, f., an, m*., zhuang, l., elsworth, d., zhong, z. (2023). “frictional stability and permeability evolution of fractures subjected to repeated cycles of heating-and-quenching: granites from the gonghe basin, northwest china”, geomechanics and geophysics for geo-energy and geo-resources, 9(1), 18. https://doi.org/10.1007/s40948-023-00565-9 [13]wang, t., wang, c., zhang, f*. (2023). “experimental study of fines migration in gap-graded soils with gas production: implications to hydrate production from unconsolidated reservoirs”, geoenergy science and engineering, 211856. https://doi.org/10.1016/j.geoen.2023.211856 [14]zhang, f., cao, s., an, m*., zhang, c., elsworth, d. (2023). “friction and stability of granite faults in the gonghe geothermal reservoir and implications for injection-induced seismicity”, geothermics, 112, 102730. https://doi.org/10.1016/j.geothermics.2023.102730 [15]wang, y., zhang, f*., liu, f., wang, x. (2023). “full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, acta geotech. https://doi.org/10.1007/s11440-023-01904-6 [16]li, j*., xu, j., zhang, h*., yang, w., tan, y., zhang, f., meng, l., zang, y., miao, s., guo, c., li, z., lu, r., sun, j. (2023). “high seismic velocity structures control moderate to strong induced earthquake behaviors by shale gas development”, communications earth & environment, 4, 188. https://doi.org/10.1038/s43247-023-00854-x [17]liu, y., zhang, j., bai, j., zhang, f.*, tang, j. (2023), “numerical study of hydraulic fracturing in the sectorial well-factory considering well interference and stress shadowing”, petroleum science. https://doi.org/10.1016/j.petsci.2023.05.020. [18]zhao, l., cai, z., qin, x*., wang, y., teng, l., han, d., zhang, f., geng, j.(2023). “an empirical elastic anisotropy prediction model in self-sourced reservoir shales and its influencing factor analysis”, geophysics, 88(3), mr117–mr126. https://doi.org/10.1190/geo2022-0543.1 [20]wang, t., zhang, f*., wang, p. (2023). “experimental and numerical study of seepage-induced suffusion under k0 stress state”, journal of zhejiang university-science a, 24 (4), 319-331. https://doi.org/10.1631/jzus.a2200198 [21]liu, p., sun, m., chen, z., zhang, s., zhang, f., chen, y., chen, w., bate, b*. (2023). “influencing factors on fines deposition in porous media by cfd–dem simulation”, acta geotechnica. https://doi.org/10.1007/s11440-023-01870-z [22]zhong, z., xu, c., wang, l., hu, y., zhang, f*. (2023). “experimental investigation on frictional properties of stressed basalt fractures”, journal of rock mechanics and geotechnical engineering. https://doi.org/10.1016/j.jrmge.2022.12.020 [23]hou, l., elsworth, d*., zhang, f., wang, z., zhang, j. (2023). “evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models”, energy, 264, 126122. https://doi.org/10.1016/j.energy.2022.126122 [24]wang, x., zhang, f*., tang, m., du, x., hou, b., tang, j. (2023). “numerical investigation of hydraulic fracture deflection in large-angle oblique horizontal wells with staged multi-cluster fracturing”, geoenergy science and engineering, 222, 211436. https://doi.org/10.1016/j.geoen.2023.211436 [25]wang, t., zhang, f*., zheng, w. (2023). “suffusion of gap-graded soil with realistically shaped coarse grains: a dem–dfm numerical study”, international journal of geomechanics, 23(1), 04022247.https://doi.org/10.1061/(asce)gm.1943-5622.0002616 [27]qin, x., zhao, l*., cai, z., wang, y., xu, m., zhang, f., han, d., geng, j. (2022). “compressional and shear wave velocities relationship in anisotropic organic shales”, journal of petroleum science and engineering, 219, 111070. https://doi.org/10.1016/j.petrol.2022.111070 [28]wang, t., wang, p*., yin, z., zhang, f. (2022). “dem-dfm modeling of suffusion in calcareous sands considering the effect of double-porosity”, computer and geotechnics, 151, 104965. https://doi.org/10.1016/j.compgeo.2022.104965 [29]wang, x., zhang, f*., yin, z., weng, d., liang, h., zhou, j., xu, b. (2022). “numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs”, petroleum science, 19(5), 2210-2226. https://doi.org/10.1016/j.petsci.2022.05.006 [30]li, m., wu, j., li, j., zhuang, l., wang, s., zhang, f*. (2022). “modeling of hydraulic fracturing in polymineralic rock with a grain-based dem coupled with a pore network model”, engineering fracture mechanics, 275, 108801.https://doi.org/10.1016/j.engfracmech.2022.108801 [31]zhu, h., tang, x*., zhang, f., mclennan, j. d. (2022). “mechanical behavior of methane–hydrate–bearing sand with nonlinear constitutive model”, arabian journal for science engineering, 47, 12141–12167. https://doi.org/10.1007/s13369-022-06914-2 [32]wang, b., li, d., xu, b., zhang, y., zhang, f*., wang, q., yang, b. (2022). “probabilistic-based geomechanical assessment of maximum operating pressure for an underground gas storage reservoir, nw china”, geomechanics for energy and the environment, 100279. https://doi.org/10.1016/j.gete.2021.100279 2352-3808 [33]zhang, f., cui, l., an, m*., elsworth, d., he, c. (2022). “frictional stability of longmaxi shale gouges and its implication for deep seismic potential in the southeastern sichuan basin”, deep underground science and engineering, 1, 3–14. https://doi.org/10.1002/dug2.12013 [34]zhang, f., r. huang, m. an*, k.b. min, d. elsworth, h. hofmann, x. wang. (2022). “competing controls of effective stress variation and chloritization on friction and stability of faults in granite: implications for seismicity triggered by fluid injection.” journal of geophysical research: solid earth, e2022jb024310. https://doi.org/10.1029/2022jb024310 [35]jiang, c., wang, x*., zhang, f., deng, k., lei, q. (2022). “fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs”, rock mechanics and rock engineering, 55 (8), 5235-5258. https://doi.org/10.1007/s00603-022-02882-z [36]hou, b*., cui, z., ding, j., zhang, f., zhuang, l., elsworth, d. (2022), “perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata”, petroleum science, 19,1718-1734 https://doi.org/10.1016/j.petsci.2022.03.014 [37]zhang, f., wang, t., liu, f.*, peng, m., bate, b. and wang, p. (2022). “hydro-mechanical coupled analysis of near-wellbore fines migration and sanding from unconsolidated reservoirs”, acta geotechnica, 1-17. https://doi.org/10.1007/s11440-021-01396-2 [38]zhang, f*., huang, l., yang, l., dontsov, e., weng, d., liang, h., yin, z. and tang, j. (2022). “numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation”, petroleum science, 19, 296-308. https://doi.org/10.1016/j.petsci.2021.09.014 [39]espinoza, w. f., zhang, f., dai, s*. (2022). “impacts of temperature on the mechanical properties of longmaxi shale outcrops using instrumented nanoindentation”, geomechanics for energy and the environment, 30, 100348. https://doi.org/10.1016/j.gete.2022.100348 [40]yang, k., zhou, j*., xian, x., zhou, l., zhang, c., tian, s., lu, z., zhang, f. (2022). chemical-mechanical coupling effects on the permeability of shale subjected to supercritical co2-water exposure, energy, 248, 123591. https://doi.org/10.1016/j.energy.2022.123591 [41]zhang, f., wang, c.and wang, t*. (2022). “model test on backward erosion piping under a k0 stress state”, international journal of geomechanics, 22(4), 04022015. https://doi.org/10.1061/ (asce)gm.1943-5622.0002326 [42]an, m., zhang, f*., min, k. b., elsworth, d., he, c., zhao, l. (2022). “frictional stability of metamorphic epidote in granitoid faults under hydrothermal conditions and implications for injection-induced seismicity”, journal of geophysical research: solid earth, e2021jb023136. https://doi. org/10.1029/2021jb023136 [43]wang, x., zhang, f*., tang, m., du, x., and tang, j. (2022). “effect of stress shadow caused by multistage fracturing from multiple well pads on fracture initiation and near-wellbore propagation from infill wells”, spe journal, 27(01), 204-225. https://doi.org/10.2118/208577-pa [44]wang, t., zhang, f*., furtney, j., damjanac, b. (2022). “a review of methods, applications and limitations for incorporating fluid flow in the discrete element method”, journal of rock mechanics and geotechnical engineering. 14(3), 1005–1024. https://doi.org/10.1016/j.jrmge.2021.10.015 [45]huang, l., dontsov, e., fu, h., lei, y., weng, d., and zhang, f*. (2022). “hydraulic fracture height growth in layered rocks: perspective from dem simulation of different propagation regimes”, international journal of solids and structures, 238, 111395. https://doi.org/10.1016/j.ijsolstr.2021.111395 [46]bate, b., chen, x., chen, j. sun, m., li, j., zhang, s., zhang, f., zhan, l., cao, j*. (2022) “internal erosion monitoring with a rowe cell type compression–breakthrough–bender element column”, acta geotech. 17(6), 2365–2377. https://doi.org/10.1007/s11440-021-01413-4 [47]chen, y., zhao, l*., pan, j., li, c., xu, m., li, k., zhang, f., and geng, j. (2021). “deep carbonate reservoir characterization using multi-seismic attributes via machine learning with physical constraints”, journal of geophysics and engineering, 18(5), 761-775. https://doi.org/10.1093/jge/gxab049 [48]wang, x., sun, x., luo, c., zhang, f.*, and xu, b. (2021). “large-scale triaxial experimental investigation of geomechanical dilation start-up for sagd dual horizontal wells in shallow heavy oil reservoirs”, journal of petroleum science and engineering, 203, 108687. https://doi.org/10.1016/j.petrol.2021.108687 [49]jin, s., wang, x., wang, z., mo, s., zhang, f., and tang, j*. (2021). “evaluation approach of rock brittleness index for fracturing acidizing based on energy evolution theory and damage constitutive relation”. lithosphere, 2021(special 4), 2864940. https://doi.org/10.2113/2021/2864940 [50]zhou, z., yang, d*., chen, w., zhang, x., wu, b. and zhang, f. (2021). “numerical study of initiation pressure in hydraulic fracturing by dual criterion for non-circular wellbore”, engineering fracture mechanics, 107804. https://doi.org/10.1016/j.engfracmech.2021.107804 [51]an, m., zhang, f*., min, k. b., elsworth, d., marone, c., and he, c. (2021). “the potential for low-grade metamorphism to facilitate fault instability in a geothermal reservoir”, geophysical research letters, e2021gl093552. https://doi.org/10.1029/2021gl093552 [52]zhang, f., wang, x., tang, m., du, x., xu, c., tang, j*., and damjanac, b. (2021). “numerical investigation on hydraulic fracturing of extreme limited entry perforating in plug-and-perforation completion of shale oil reservoir in changqing oilfield, china”, rock mechanics and rock engineering, 54(6). https://doi.org/10.1007/s00603-021-02450-x [53]bate, b., nie, s., chen, z*., zhang, f., and chen, y. (2021) “construction of soil-water characteristic curve of granular materials with toroidal model and artificially generated packings”, acta geotechnica, 16(6), 1949-1960. https://doi.org/10.1007/s11440-021-01140-w [54]an, m., zhang, f*., dontsov, e., elsworth, d., zhu, h., and zhao, l. (2021). “stress perturbation caused by multistage hydraulic fracturing: implications for deep fault reactivation”, international journal of rock mechanics and mining sciences, 141(5), 104704. https://doi.org/10.1016/j.ijrmms.2021.104704 [55]lin, q., cheng, q*., xie, y., zhang, f., li, k., wang, y., zhou, y. (2021). “simulation of the fragmentation and propagation of jointed rock masses in rockslides: dem modeling and physical experimental verification”, landslides ,18:993–1009. [56]tang, j*., fan, b*., xiao, l**., tian, s., zhang, f., zhang, l., and weitz, d. (2021). “a new ensemble machine-learning framework for searching sweet spots in shale reservoirs”, spe journal, 26(1), 482-497. https://doi.org/10.2118/204224-pa [57]chen, j., zhou, m., zhang*, d., huang, h., and zhang, f. (2021). “quantification of water inflow in rock tunnel faces via convolutional neural network approach”, automation in construction, 123(5), 103526. https://doi.org/10.1016/j.autcon.2020.103526 [58]huang, r., chen, z., zhang, f*., zhou, x., wang, q., cao, h., zhang, h., and yang, x. (2020). “fault slip risk assessment and treating parameters optimization for casing deformation prevention: a case study in the sichuan basin”, geofluids, 2020(58), 1-17. https://doi.org/10.1155/2020/8894514 [59]zhang, f., jiang, z., chen, z., yin, z., and tang, j*. (2020). “hydraulic fracturing induced fault slip and casing shear in sichuan basin: a multi-scale numerical investigation”, journal of petroleum science and engineering, 195. https://doi.org/10.1016/j.petrol.2020.107797 [60]li, m., zhang, f*., zhuang, l., zhang, x., and ranjith, p. (2020). “micromechanical analysis of hydraulic fracturing in the toughness-dominated regime: implications to supercritical carbon dioxide fracturing”, computational geosciences, 24(5), 1815-1831. https://doi.org/10.1007/s10596-019-09925-5 [61]yang, j., yang, d., zhang, x*., jeffrey, r., chen, w., sheng, q., and zhang, f*. (2020). “energy budget and fast rupture on a near-excavation fault: implications for mitigating induced seismicity”, journal of geophysical research: solid earth, 125, e2020jb019360. https://doi.org/10.1029/2020jb019360 [62]an, m., zhang, f*., chen, z., elsworth, d., and zhang, l. (2020). “temperature and fluid pressurization effects on frictional stability of shale faults reactivated by hydraulic fracturing in the changning block, southwest china”, journal of geophysical research: solid earth, 125, e2020jb019584. https://doi.org/10.1029/2020jb019584 [63]an, m., zhang, f*., elsworth, d., xu, z., chen, z., and zhang, l. (2020). “friction of longmaxi shale gouges and implications for seismicity during hydraulic fracturing”, journal of geophysical research: solid earth, 125, e2020jb019885. https://doi.org/10.1029/2020jb019885 [64]zhang, f., wang, t., liu, f., peng, m*., furtney, j., and zhang, l. (2020). “”, computer and geotechnics, 124, 103617. https://doi.org/10.1016/j.compgeo.2020.103617 [65]wang, c*., elsworth, d., fang, y., and zhang, f. (2020). “influence of fracture roughness on the shear strength, slip stability and permeability: a mechanistic analysis by three-dimensional digital rock modeling”, journal of rock mechanics and geotechnical engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.010 [66]yin, z., huang, h., zhang, f*., zhang, l., and maxwell, s. (2020). “three-dimensional distinct element modeling of fault reactivation and induced seismicity due to hydraulic fracturing injection and backflow”, journal of rock mechanics and geotechnical engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.009 [67]huang, l., liu, j., zhang, f*., fu, h., zhu, h., and damjanac, b. (2020). “3d lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models”, journal of petroleum science and engineering, 191, 107169. https://doi.org/10.1016/j.petrol.2020.107169 [68]zhang, z., chen, f., zhang, c., wang, c., wang, t., zhang, f*., and zhao, h. (2020). “numerical simulation of rock failure process with a 3d grain-based rock model”, advances in civil engineering, 2020(4), 1-11. https://doi.org/10.1155/2020/8810022 [69]yin, z., wang, p*., zhang, f. (2020). “effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled fdm-dem method”. tunnelling and underground space technology, 100, 103394. https://doi.org/10.1016/j.tust.2020.103394 [70]wang, t., huang, h., zhang, f*., and han, y. (2020). “dem-continuum mechanics coupled modeling of slot-shaped breakout in high-porosity sandstone”, tunnelling and underground space technology, 98, 103348. https://doi.org/10.1016/j.tust.2020.103348 [71]zhang, f*., yin, z., chen, z., maxwell, s., zhang, l., and wu, y. (2020). “fault reactivation and induced seismicity during multistage hydraulic fracturing: microseismic analysis and geomechanical modeling”, spe journal, 25(02), 0692-0711. [72]zhang, f., an, m., zhang, l*., fang, y., and elsworth, d. (2020). “effect of mineralogy on friction-dilation relationships for simulated faults: implications for permeability evolution in caprock faults”, geoscience frontiers, 11(2), 439-450. https://doi.org/10.1016/j.gsf.2019.05.014 [73]an, m., huang, h., zhang, f*., and elsworth, d. (2020). “effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges”, geomechanics and geophysics for geo-energy and geo-resources, 6, 28. https://doi.org/10.1007/s40948-020-00153-1 [74]汤继周,王小华,杜现飞,马兵,张丰收*.扇形井网体积压裂地质工程一体化参数优化方法[j].石油勘探与开发,2023,50(4):845-852. ,罗浩然,张丰收*.水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[j].岩石力学与工程学报,,505-505. ,李猛利,张重远*,何满潮,张盛生,衡德.高地应力下深部岩芯饼化裂缝发展规律及机制研究[j/ol]. 岩石力学与工程学报,2022,41(3):533-542. [77]付海峰,才博,庚勐,贾爱林,翁定为,梁天成,张丰收,问晓勇,修乃岭.基于储层纵向非均质性的水力压裂裂缝三维扩展模拟 [j]. 天然气工业 , 2022, 42(5): 56-68. ,朱强,张丰收*,赵程,伍法权.基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究[j].岩石力学与工程学报,2021,40(06):1119-1131. [79]孙君,王小华,徐斌,张丰收*.强非均质超稠油砂储层双水平井扩容启动数值模拟研究[j].科学技术与工程,2021,21(15):6262-6271. [80]侯冰,武安安,常智,尤源,寇晓璇,张丰收.页岩油储层多甜点压裂裂缝垂向扩展试验研究[j].岩土工程学报,2021,43(07):1322-1330. [81]张丰收,吴建发,黄浩勇,王小华*,罗浩然,岳文翰,侯冰.提高深层页岩裂缝扩展复杂程度的工艺参数优化[j].天然气工业,2021,41(01):125-135. ,黄刘科,张丰收*,胥云,才博,梁天成,王欣.射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[j].岩石力学与工程学报,2021,40(s2):3163-3173. [83]张少强,侯圣均,江传彬,程宏,蒋振源,张丰收*.走滑断层错动作用下隧道变形的数值分析[j].现代隧道技术,2020,57(s1):418-424. [84]蒋振源,陈朝伟,张平,张丰收.断块滑动引起的套管变形及影响因素分析[j].石油管材与仪器,2020,6(04):30-37.
[1] li, x., zhang, f., du, m., xiu, n., weng, d., cai, b., fu, h., huang, l. “numerical study on permeability evolution of a natural fracture in granite during shearing”, 57th u.s. rock mechanics/geomechanics symposium, atlanta, georgia, usa, june 2023. https://doi.org/10.56952/arma-2023-0196 [2] cui, l., zhang, f., an, m., zhuang, l., wang, h. “effect of heating-cooling cycles on the friction-permeability evolution of granite fractures under shearing”, 57th u.s. rock mechanics/geomechanics symposium, atlanta, georgia, usa, june 2023. https://doi.org/10.56952/arma-2023-0458 [3] hou, l., zhang, f., elsworth, d. “post-fracturing evaluation of fractures by interpreting the dynamic matching between proppant injection and fracture propagation”, 57th u.s. rock mechanics/geomechanics symposium, atlanta, georgia, usa, june 2023. https://doi.org/10.56952/arma-2023-0342 [4] du, m., zhang, f., liu, f., zhuang, l. “numerical study on the effect of localized fluid pressurization on shear and hydraulic behavior of a natural fracture in granite”, arma-2022-0376, [5] luo, h., shi, x., gou, q., zhang, d., zhang, f., cui, l. “friction-stability-permeability relationship of longmaxi shale fractures from the southern sichuan basin, southwest china”, arma-2022-0202, 56th us rock mechanics / geomechanics symposium, santa fe, new mexico, usa, june 2022. https://doi.org/10.56952/arma-2022-0202 [6] li, m., zhang, f., zhuang, l. “micromechanical analysis of hydraulic fracturing in granite with a grain-based dem coupled with pore network model” arma-igs-21-089, arma/dgs/seg international geomechanics symposium, virtual, november 2021. [7] elsworth, d., fang, y., im, k., wang, c., ishibashi, t., jia, y., yildirim, e.c., zhang, f. “seismicity-permeability coupling in the breaching and sealing of reservoirs and caprocks”, 82nd eage annual conference & exhibition, oct 2021, volume 2021, p.1-5. https://doi.org/10.3997/2214-4609.202010413 [8] zhang, k., tang, m., du, x., wang, x., zhang, f., tang, j. “stress disturbance induced by multiple-well fracturing and its influence on initiation and near-wellbore propagation from infill horizontal perforated borehole”, iop conference series: earth and environmental science, volume 861,072119. https://doi.org/10.1088/1755-1315/861/7/072119 [9] an, m., zhang, f., elsworth, d. “hpht fault gouge friction experiments: implication for hydraulic fracturing induced seismicity in the sichuan basin”arma-2021-1572, 55th us rock mechanics/geomechanics symposium, virtual, june 2021. [10]tang, j., fan, b., lu, w., liang, l., zhang, f., cai, b. “machine learning models for predicting well production based on fracturing construction data”, spe annual technical conference and exhibition, 2020. [11]wu, b., yan, q., wang, l., chen, q., wang, t., and zhang, f. “dem simulation of internal erosion around a submerged defective pipe”, iop conference series: earth and environmental science, volume 570, china rock 2020, beijing, china, 23-26 october 2020. https://doi.org/10.1088/1755-1315/570/2/022050 [12]wang, x., zhang, f., sun, j., and xu, b. “experimental investigation on the sagd dilation start-up in shallow heavy oil reservoirs”, iop conference series: earth and environmental science, volume 570, china rock 2020, beijing, china, 23-26 october 2020. https://doi.org/10.1088/1755-1315/570/3/032046 [13]xie, j., tang, j., sun, s., song, y., huang, h., pei, h., li, y., and zhang, f. “numerical investigation of proppant transport and placement along opened bedding interfaces”, spe western regional meeting, 200801.
;竺炫莹;付晓伟;陈怀震;张丰收;耿建华. 联合监督和非监督学习的低勘探区地层和岩性地震评价方法[p]. 上海市:cn114137610 b,2023-05-02. [2] zhang, f., feng, r., yin, z., cao, s., zhao, l. method for pre-warning deformation of casing pipe according to change feature of b - value of hydraulic fracturing induced micro-seismicity[p]. us2022/0243584a1,2022-08-04. [3] 赵峦啸,邹采枫,陈远远,王一戎,陈怀震,张丰收,耿建华. 基于xgboost算法与特征工程的岩性及流体类型识别方法[p]. 上海市:cn111753871b,2022-12-16. [4] 赵峦啸,许明辉,陈远远,汤继周,张丰收,耿建华. 一种基于cascade样本均衡的地震流体预测方法[p]. 上海市:cn112434878b,2022-09-20. [5] 张丰收,冯睿,尹子睿,王小华,黄刘科,赵峦啸. 利用水力压裂微地震b值来优化页岩气井重复压裂方法[p]. 上海市:cn112883574b,2022-08-09. [6] 张丰收,曹澍天,王小华,安孟可,赵峦啸. 一种基于位错理论计算水力压裂产生应力场的方法[p]. 上海市:cn112417784b,2022-07-05. [7] 张丰收,冯睿,尹子睿,曹澍天,赵峦啸. 一种利用水力压裂微地震b值变化特征来预警套管变形的方法[p]. 上海市:cn112925015b,2022-03-01. [8] 赵峦啸,邹采枫,陈远远,陈怀震,张丰收,耿建华. 一种机器学习框架下考虑空间约束的地震储层预测方法[p]. 上海市:cn111596354b,2021-06-04. [9] 朱海燕,沈佳栋,高庆庆,张丰收. 一种支撑剂嵌入和裂缝导流能力定量预测的数值模拟方法[p]. 四川省:cn107423466b,2019-12-24. [10]黄宏伟,谢雄耀,杜军,张丰收,田海洋. 基于探地雷达的盾构隧道沉降控制方法[p]. 上海市:cn100445516c,2008-12-24.
《pfc2d/3d颗粒离散元数值计算方法及科学应用》中国建筑工业出版社 《离散元水力压裂一体化数值仿真》科学出版社 《复杂裂缝导流能力预测理论》科学出版社 《coupled thermo-hydro-mechanical processes in fractured rock masses》springer
弹性力学(英)主讲人 高等岩石力学(英)主讲人 深地科学与绿色能源主讲人
腾讯首届“碳寻计划”top30奖(2023) 美国岩石力学学会rock mechanics research award(2023) 中国青年科技奖(2022) 教育部长江学者特聘教授(2021) 同济大学土木工程学院院长奖(2021)
2019年度同济大学基准方中奖教金
[1]第二届ijrmms主编与作者论坛暨岩石力学-工程地质学术交叉前言讲座, 2020-12-12. [2]“深部地下空间开发的两大岩石力学问题探讨:水力压裂和断层稳定性”, 岩土力学与工程青年科学家论坛(第一届), 2020-11-23. [3]“modeling hydraulic fracturing complexity in naturally fractured rock masses: challenge and opportunity”, coufrac2020, 2020-11-13. [4]“hydraulic fracturing optimization for low permeability shale oil reservoirs in the ordos basin”, 2nd international symposium on in-situ modification of deposit properties for improving mining (imdpim2) & 7th international symposium on unconventional geomechanics (ug7), 2020-11-08. [5]“induced seismicity and casing deformation caused by hydraulic fracturing: a case study in sichuan basin, southwest china”, the chinese university of hong kong, 2020-10-23. [6]“re-fracturing in low permeability reservoirs by integrating hydro-mechanical coupling and three-dimensional hydraulic fracturing”, international field exploration and development conference (ifedc), 2020-09. [7]“深地工程岩石力学多场耦合问题的研究进展”, 中国岩石力学与工程学会“青岩”学术沙龙, 2020-07-11. [8]“岩石力学多场耦合及在深地能源工程中的应用”, china rock 2019——第十六次中国岩石力学与工程学术年会, 2019-11-20. [9]“fault reactivation and induced seismicity for shale gas and geothermal: mechanism and prevention”, 19th workshop on frontier of science development and 4th iulee council, 2019-11-12. [10]“岩石力学多场耦合在深地能源工程中的应用”, 第十届全国青年岩土力学与工程会议, 2019-11. [11]“‘东湖论坛’暨首届‘岩之梦’研究生学术沙龙”, 2019-10-29. [12]“深部能源工程地质中的多场耦合问题研究进展”, 2019年全国工程地质学术年会, 2019-10-13. [13]“fault activation and induced seismicity caused by hydraulic fracturing: observations and mechanisms”, 6th international conference on unconventional geomechanics, 2019-10-11. [14]“induced seismicity and casing deformation caused by hydraulic fracturing”, “an overview in sichuan basin, southwest china”, 53rd us rock mechanics / geomechanics symposium, 2019-06-23. [15]“流体注入下深部页岩断层的激活机理和滑移变形控制”, 第十五届全国青年岩石力学与工程学术会议, 2019-05. [16]“investigating the hydraulic fracturing complexity in naturally fractured rock mass using fully coupled multiscale numerical modeling”, university of texas spring seminar series, 2019-04-19. [17]“深地工程中断层的稳定性机理和滑移变形控制”, 第三届特殊土力学与工程实践青年学者论坛, 2019-01. [18]“高温高压条件下深部断层的摩擦稳定性研究”, china rock 2018——第十五次中国岩石力学与工程学术年会, 2018-11-22. [19]“非常规油气开发中的水力压裂裂缝扩展数值分析——几个应用实例” , china rock 2018——第十五次中国岩石力学与工程学术年会, 2018-11-22. [20]“流体注入致密干砂中的失效机理及流动方式——模型实验及数值分析”, 第十次青年工程地质论坛, 2018-09. [21]“深部复杂裂隙岩体的水力压裂多尺度数值模拟”, 第九次青年工程地质论坛, 2018-07. [22]“geomechanical modeling for injection induced seismicity”, 52nd us rock mechanics / geomechanics symposium, 2018-06-17. [23]“颗粒离散元法的岩石力学与工程应用”, 第二届岩石力学与工程青年论坛, 2018-05. [24]“fracal patterns of fluid injection into dense granular medium”, the 4th international symposium on multi-scale geomechanics and geo-engineering, 2018-01-14. [25]“深地水力压裂导致的断层激活和诱发地震活动初探”, 中国科协第335次青年科学家论坛, 2017-11. [26]“缝洞型碳酸盐岩储层在长期抽/注液体作用下的流-固耦合力学分析”, 中国力学大会2017暨庆祝中国力学学会成立60周年大会, 2017-08-16. [27]“水力压裂导致的断层激活和地震活动——机理分析和数值模拟”, 2017年第七次青年工程地质学术研讨会, 2017-08. [28]“hydraulic fracturing in fractured rocks: perspectives from multi-scale numerical modeling”, the 3rd international symposium on multi-scale geomechanics and geo-engineering, 2016-11-12. 2023~至今国际岩石力学与岩石工程学会副主席、中国国家小组副主席 2023~至今中国岩石力学与工程学会青年工作委员会主任 2022~至今中国岩石力学与工程学会低碳岩石力学与工程专委会副主任 2022~至今 rock mechanics bulletin创刊执行主编 2021~至今 journal of rock mechanics and geotechnical engineering 编委、科学编辑 2021~至今《岩石力学与工程学报》编委 2021~至今中国岩石力学与工程学会副秘书长 2021~至今《petroleum science》副主编 2021~至今《天然气工业》编委 2021~至今中国地质学会工程地质专委会委员 2020~至今中国岩石力学与工程学会理事 2020~至今中国地震学会构造物理专业委员会委员 2020~至今中国岩石力学与工程学会岩土体多场耦合专委会副主任 2020~至今中国岩石力学与工程学会岩石破碎工程专业委员会委员
每年招收博士生2-3名,硕士生3名,博后不限名额
博士后: 黄刘科,毕业学校:西南石油大学,入站时间:2020年 罗浩然,毕业学校:西南石油大学,入站时间:2020年 安孟可,毕业学校:同济大学,入站时间:2021年 王晶晶,毕业学校:西班牙加泰罗尼亚理工大学,入站时间:2022年 张秀凤,毕业学校:东北大学,入站时间:2022年 李孟熠,毕业学校:武汉大学,入站时间:2023年 王小华,毕业学校:同济大学,入站时间:2024年
博士: 安孟可,入学时间:2016年 王拓,入学时间:2017年 李猛利,入学时间:2018年 尹子睿,入学时间:2018年 王小华,入学时间:2019年 曾铭,入学时间:2019年 曹澍天,入学时间:2020年 崔力,入学时间:2020年 王翀,入学时间:2020年 王洋,入学时间:2020年 冯钊,入学时间:2021年 黄锐,入学时间:2021年 李雪峰,入学时间:2021年 刘昱昊,入学时间:2021年 李汉章,入学时间:2022年 杜泊潼,入学时间:2022年 周子扬,入学时间:2023年 吕建航,入学时间:2023年
硕士: 张梓璠,入学时间:2017年 蒋振源,入学时间:2018年 杨林,入学时间:2018年 杜沐,入学时间:2019年 冯睿,入学时间:2019年 张文露,入学时间:2019年 何冠鹏,入学时间:2020年 颜书祺,入学时间:2021年 赵文治,入学时间:2021年 郑凌霄,入学时间:2021年 陈世航,入学时间:2022年 任天悦,入学时间:2022年 韦俊杰,入学时间:2022年 孟可雨,入学时间:2023年 欧阳蔚荃,入学时间:2023年 夏井泉,入学时间:2023年 |
![]() ![]() |
上海市四平路1239号 021-65981011
合乐hl8新版的版权所有:同济大学土木工程学院地下建筑与工程系 合乐hl8新版的技术支持:苏迪科技