![]() 木林隆
男, 博士, 教授,博士生导师, 国家注册土木工程师(岩土)
生, 浙江温州
教育部青年长江学者 上海市青年科技启明星 国家注册土木工程师(岩土) 地基基础工程研究所副所长
![]() ![]() ![]() ![]() 主要研究方向:
l 桩基l 海上风电基础l 地下工程l 岩土智能建造
|
2006.9-2012.5 同济大学,岩土工程,硕士/博士,导师:黄茂松教授 2009.12-2011.5 美国西北大学,岩土工程,联合培养博士,导师:richard j finno 教授 2002.9- 2006.7 同济大学,土木工程,本科
2012.3-至今 同济大学,土木工程学院地下建筑与工程系,讲师、副教授、教授 2017.12-2018.12 美国德州大学奥斯汀分校,访问学者
代表性主持科研项目 [1] 多向耦合荷载下滩涂风电基础承载特性三自由度模型试验与理论研究,国家自然科学基金委员会,2013.1-2015.12. [2] 黏性-砂性土中沉箱(井)加桩基础冲刷机理及安全评估方法研究,国家自然科学基金委员会,2016.1-2019.12. [3] 黄土高填方荷载作用下的排水盲沟结构受力与变形特性研究,陕西省特殊岩土性质与处理重点实验室开放基金,2017.10-2018.10. [4] 多向耦合荷载作用下陆上风机梁板式桩筏基础承载特性试验与理论研究, 中央高校科研经费,2014.1-2015.12 [5] 砂性-黏性土中多向荷载在沉井加桩基础上的耦合效应研究, 中央高校科研经费,2016.1-2017.12 [6] 上海启明星计划,基于bim的地下工程开挖安全智慧管控关键技术研究,2019/4-2022/3. [7] 超标准强浪下水工建筑物全时域脆性破坏与防冲蚀韧性演化规律,国家重点研发计划专题,2021.1-2024.12 [8]风暴荷载下砂性海床中多向受荷桶形锚固基础极端承载性能研究,上海市自然科学基金, 2022.4-2025.3 [9]杭州地铁9号线一期工程四堡停车场技术咨询,中铁三局,2021.9-2023.12 [10]软土基坑开挖变形实时高精度智能预测算法研究,上海建筑科学研究院有限公司,2023.12-2024.12.
2016.7-2020.12。 [2] 城市地下空间工程安全控制理论与分布式感测预警方法,国家自然科学基金重点项目,2018.1-2022.12 [3] 复杂环境下深水基础承载行为演化与长期性能设计子课题“波流荷载与冲刷作用下深水基础性能演化与动态控制,国家重点基础研究发展计划(973计划)课题,2013.1-2017.12。 [4] 沿海交通水工建筑物韧性提升关键技术项目课题水工建筑物冲蚀破坏模拟及防浪韧性维护技术,国家重点基础研究发展计划,2022.1-2024.12.
代表性论文 [1] zhang p y, mu l l, huang m s. influence of soil relative density on suffusion of gap-graded soil based on coupled computational fluid dynamics-discrete element method[j]. yantu lixue/rock and soil mechanics, 2024, 45(1): 267-283and324. [2] zhang p, mu l l, lu y, et al.. microscopic insights into suction bucket installation in sand: coupled coarse-grained cfd-dem simulations[j]. computers and geotechnics, 2024, 167. [3] mu l l, zhou t, huang m. numerical analysis on the behavior of suction anchor under partial drained conditions[a]. 2024, 1332(1). [4] mu l l, wang s, huang m. ultimate lateral resistance of single piles in sand[a]. 2024, 1336(1). [5] zhang z, wo w, mu l l, et al.. mathematical modelling for shield tunneling induced displacement effects on in-service tunnel: theoretical solution including shearing deformation of segment and stiffness reduction of circumferential joints[j]. applied mathematical modelling, 2023, 118: 322–345. [6] zhang x, hu z, mu l l, et al.. nonlinear investigation of laterally loaded piles in layered sand with a modified conical strain wedge model[j]. ocean engineering, 2023, 272. [7] zhang p, mu l l, huang m. a coupled cfd-dem investigation into hydro-mechanical behaviour of gap-graded soil experiencing seepage erosion considering cyclic hydraulic loading[j]. journal of hydrology, 2023, 624. [8] mu l l, liu k, zhu m x, et al.. intelligent prediction of excavation-induced retaining wall deformation[a]. 见: smart geotechnics for smart societies[m]. 2023: 986–995. [9] mu l l, zhang p, shi z, et al.. predicting longitudinal tunnel deformation due to deep excavation-induced ground movement[j]. tunnelling and underground space technology, 2023, 131. [10]mu l l, zhang p, shi z, et al.. coupled cfd–dem investigation of erosion accompanied by clogging mechanism under different hydraulic gradients[j]. computers and geotechnics, 2023, 153. [11]hussaine s m, mu l l. correction: intelligent prediction of maximum ground settlement induced by epb shield tunneling using automated machine learning techniques (mathematics, (2022), 10, (4637), 10.3390/math10244637)[j]. mathematics, 2023, 11(8). [12]huang y, mu l l, wang p. three-dimensional finite element analysis for uplifting independent helix plate anchor in uniform clay[j]. ocean engineering, 2023, 285. [13]chen y, zhang z, mu l l, et al.. numerical simulation analysis of influence of curved tunneling on deformation of adjacent strata and segments[j]. tunnel construction, 2023, 43: 271–282. [14]mu l l, chen w, zhang y, et al.. a framework of analytical methods for horizontal behaviours of monopiles under v-h-m loads in sand[j]. marine georesources and geotechnology, 2022, 40(3): 349–360. [15]li y, mu l l, cao j. impact of seepage on the underground water level in a complex soil-water-structure system[j]. advances in civil engineering, 2022, 2022. [16]hussaine s m, mu l l. intelligent prediction of maximum ground settlement induced by epb shield tunneling using automated machine learning techniques[j]. mathematics, 2022, 10(24). [17]qian j, xu w, mu l l, et al.. calibration of soil parameters based on intelligent algorithm using efficient sampling method[j]. underground space (china), 2021, 6(3): 329–341. [18]qian j, mu l l, zhang y, et al.. behavior of a structured piled beam-slab foundation for a wind turbine under multidirectional loads in sand[j]. international journal of geomechanics, 2021, 21(3). [19]mu l l, zhou t, li w. analysis of lateral behaviour of monopiles considering principal stress rotation under coupled loading in sand[a]. 2021, 861(7). [20]mu l l, zhu m-x, huang m-s, et al.. control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2021, 43(3): 465–470. [21]mu l l, huang m, roodi g h, et al.. allowable wall deflection of braced excavation adjacent to pile-supported buildings[j]. geomechanics and engineering, 2021, 26(2): 161–173. [22]li y f, zhu m x, mu l l. analysis of mechanical response of granular buried ditch under high-fill foundation[a]. 2021, 861(3). [23]qian j, tong y, mu l l, et al.. a displacement controlled method for evaluating ground settlement induced by excavation in clay[j]. geomechanics and engineering, 2020, 20(4): 275–285. [24]mu l l, zhang y. cracking elements method with 6-node triangular element[j]. finite elements in analysis and design, 2020, 177. [25]mu l l, lin j, shi z, et al.. predicting excavation-induced tunnel response by process-based modelling[j]. complexity, 2020, 2020. [26]mu l l, chen w, huang m, et al.. hybrid method for predicting the response of a pile-raft foundation to adjacent braced excavation[j]. international journal of geomechanics, 2020, 20(4). [27]zhang j-w, cao j, mu l l, et al.. buoyancy force acting on underground structures considering seepage of confined water[j]. complexity, 2019, 2019. [28]zeng p, mu l l, zhang y. models for liquid relative permeability of cementitious porous media at elevated temperature: comparisons and discussions[j]. mathematical biosciences and engineering, 2019, 16(5): 4007–4035. [29]mu l l, wang l, huang m-s, et al.. experimental study on influences of leakage of confined water on buoyancy of underground structures[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2019, 41(4): 769–774. [30]mu l l, wang l, li j, et al.. numerical analysis of influence of the underground structure on seepage[j]. tumu gongcheng xuebao/china civil engineering journal, 2019, 52: 78–84. [31]mu l l, kang x, feng k, et al.. influence of vertical loads on lateral behaviour of monopiles in sand[j]. european journal of environmental and civil engineering, 2018, 22(sup1): s286–s301. [32]lü x, ma q, mu l l, et al.. model test of the long-term behavior of a pile-net structure subgrade for highspeed railways[j]. journal of testing and evaluation, 2018, 46(6): 2311–2318. [33]mu l l, kang x-y, li w. analytical method for single pile under v-h-m combined loads in sand[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2017, 39: 153–156. [34]mu l l, chen q, huang m, et al.. hybrid approach for rigid piled-raft foundations subjected to coupled loads in layered soils[j]. international journal of geomechanics, 2017, 17(5). [36]mu l l huang m. small strain based method for predicting three-dimensional soil displacements induced by braced excavation[j]. tunnelling and underground space technology, 2016, 52: 12–22. [37]mu l l, huang m s, zhang j, et al.. influence of vertical loads on the behavior of laterally loaded large diameter pile in sand[a]. 2015: 729–734. [38]mu l l, huang m s, zhang j, et al.. influence of vertical loads on the behavior of laterally loaded large diameter pile in sand[a]. 见: frontiers in offshore geotechnics iii[m]. 2015: 729–734. [39]mu l l, lian k-n, huang m-s, et al.. large-scale model test on bearing capacity of piled beam-slab foundation for wind turbine[j]. yantu lixue/rock and soil mechanics, 2015, 36(7): 1877–1882. [40]mu l l, huang m s, zhang y, et al.. an analytical method for rigid piled-raft foundations subjected coupled loads in layered soils[a]. 2015: 11–16. [41]mu l l, huang m. small strain model based method for analysis of pile responses induced by excavation[a]. 2015: 1447–1451. [42]mu l l, huang m. analytical method for evaluation of coupled responses of a multidirectionally loaded pile-raft foundation induced by tunnelling in layered soils[j]. mathematical problems in engineering, 2015, 2015. [43]mu l l, finno r j, huang m, et al.. defining the soil parameters for computing deformations caused by braced excavation[j]. maejo international journal of science and technology, 2015, 9(2): 165–180. [44]zhang y-j, mu l l, qian j-g, et al.. field test of piled beam-slab foundation[j]. yantu lixue/rock and soil mechanics, 2014, 35(11): 3253–3258. [45]mu l l, huang m-s. small-strain behavior-based method for eflect of excavations on adjacent pile foundations[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2014, 36: 304–310. [46]mu l l, huang m, lian k. analysis of pile-raft foundations under complex loads in layered soils[j]. international journal for numerical and analytical methods in geomechanics, 2014, 38(3): 256–280. [47]li w, mu l l, lian k-n. model test on piled beam-slab raft foundation for wind turbines considering raft rigidity[j]. yantu lixue/rock and soil mechanics, 2014, 35(10): 2875–2880. [48]feng c-m, mu l l, sun z-w, et al.. two-stage analysis of responses of bridge pile foundations to adjacent surcharge[j]. yantu lixue/rock and soil mechanics, 2014, 35: 528–534. [49]mu l l, huang m-s. simplified method for analysis of soil movement induced by excavations[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2013, 35(5): 820–827. [50]liu h, mu l l, huang m-s, et al.. model tests on dynamic response of tunnels under tidal bore excitations[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2013, 35(suppl.1): 501–505. [51]jiu y-z, huang m-s, mu l l, et al.. analysis of rigid piled raft foundations subjected to coupled loads in layered soils[j]. yantu lixue/rock and soil mechanics, 2013, 34(3): 849–855. [52]wang h-w, jiu y-z, mu l l. simplified analysis of stress characteristics of beam-slab type raft foundation for wind turbine on land[j]. yantu lixue/rock and soil mechanics, 2012, 33(suppl. 1): 205–210. [53]mu l l, huang m-s, wu s-m. soil responses induced by excavations based on inverse analysis[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2012, 34(suppl.): 60–64. [54]mu l l, huang m, finno r j. tunnelling effects on lateral behavior of pile rafts in layered soil[j]. tunnelling and underground space technology, 2012, 28(1): 192–201. [55]lian k-n, mu l l, huang m-s, et al.. numerical analysis of piled beam-raft foundation of third-phrase project of guohua tongliao wind farms[j]. yantu lixue/rock and soil mechanics, 2012, 33(suppl. 1): 290–296. [56]huang m, mu l l. vertical response of pile raft foundations subjected to tunneling-induced ground movements in layered soil[j]. international journal for numerical and analytical methods in geomechanics, 2012, 36(8): 977–1001. [57]mu l l, huang m-s, wang w-d. vertical responses of capped pile foundations to ground movements induced by tunneling[j]. yantu gongcheng xuebao/chinese journal of geotechnical engineering, 2011, 33(7): 1082–1090. [58]huang m, zhang c, mu l l, et al.. analysis of anchor foundation with root caissons loaded in nonhomogeneous soils[j]. canadian geotechnical journal, 2011, 48(2): 234–268. [59]mu l l, huang m-s, gong w-m, et al.. response analysis of anchorage foundation under lateral loading[j]. yantu lixue/rock and soil mechanics, 2010, 31(1): 287–292. [60]zhang c, huang m, mu l l. analysis of anchor foundation with root-caisson in non-homogeneous soils[a]. 2009(185): 95–102.
代表性专利 1. 一种风电储能装置, zl201420637909.3,实用新型,2015-04-08 中国(黄茂松,木林隆,冯凯) 2. 模拟桩侧后注浆抗拔桩桩土接触面物理性质的试验装置, zl201210310998.6 发明, 2016-04-01 中国(钱建固,黄茂松,木林隆,马宵,王永刚) 3. 测试注浆成型螺纹桩抗拔桩桩土接触面力学性质的方法, zl201210310990.x, 发明, 2015-07-01 中国(钱建固,黄茂松,木林隆,陈宏伟) 4. 模拟风电基础受三向耦合荷载作用的试验装置, zl201210125003.9 发明 2015-06-01 中国(黄茂松,木林隆,纠永志) 5. 模拟桩筏基础筏板受六个方向荷载作用的试验装置, zl201210593959.1, 发明 2014-12-01 中国(黄茂松,木林隆,凌巧龙) 6. 一种模拟桩基础受竖向拉压荷载作用的试验装置,zl201220748712.8,实用新型,2013-07-17,中国(木林隆,黄茂松,刘欢) 7. 一种模拟涌潮作用下隧道动力响应的试验装置,zl201320304277.4,实用新型,2013-12-04,中国(黄茂松,木林隆,刘欢) 8. 一种风电储能装置, zl201410593918.1 发明,2017-04-01 中国(黄茂松,木林隆,冯凯) 9. 加压预固结模拟桩箱基础长期循环荷载作用的试验装置,zl201710457540.6, 发明,2019-03-29,中国(黄茂松,木林隆,马昊,李森) 10. 一种可加深锚固长度的鱼雷锚,zl202020050699.3, 实用新型,2020-01-10,中国(木林隆,陈炜,黄茂松,钱建固) 11. a self-digging underground diaphragm wall simulation device,2020102944, 发明,2020-08-21,澳大利亚(mu linlong, zhang yiming, lin jianhong, gu zhiwang) 12. three-way cyclic loading device capable of realizing soil consolidation function,2020103120,发明,2020-10-29,澳大利亚(mu linlong, huang maosong, zhang yiming) 13. 一种水压驱动模拟挡墙变位诱发墙后土体变形的试验装置,zl201910629744.2, 发明,,中国() 14. 一种模拟基坑挡墙变位诱发墙后土体变形的试验装置,zl201910630488.9,发明,,中国. (,,,) 15. 一种滑动式钢支撑架设装置,zl202010815867.8, 发明,2020-08-14,中国(木林隆,黄茂松,钱建固) 16. a sliding erection device for steel support, lu102601, 发明, 2021-02-26,卢森堡(mu linlong, zhang yiming, caojie, chen xiaoxiang) 17. 一种自下沉圆形基坑开挖模拟装置,zl202010106053.7, 发明,2020-02-20,中国(木林隆,林剑鸿,黄茂松,钱建固) 18. 一种实现吸力锚高速荷载下土体可视化的试验装置,zl202121273332.9, 实用新型,2021-12-31,中国(木林隆,黄茂松,周涛.) 19. 一种吸力桶多向倾斜快速上拔模型试验装置,zl202122594825.9,实用新型,2022-6-3,中国(木林隆,孙建国.) 20. 一种深水桩基冲刷坑尺寸的振动测量方法,zl202111064718.3, 2024-2-27,中国(木林隆,周涛) 21. 基于神经网络的基坑反分析系统v1.0,2021sr0128913,2021.1.25,上海建工四建集团有限公司 22. 基坑渐进变形围护墙位移分析软件v1.0,2021sr2180834, 2021.12.27, 同济大学 23. 基坑诱发临近管线渐进变形分析软件v1.0,2021sr2180835,2021.12.27,同济大学 24. v-h-m组合荷载下单桩分析软件v1.0,2012sr2137443,2021.12.24,同济大学 25. 基于神经网络的基坑挡墙变形预测-智能决策系统v1.0,2022sr0428457,2022-4-2,同济大学
本科生课程:《土力学与基础工程》、《基坑工程设计与施工》 研究生课程:《挡土结构与基坑工程》、《土木工程研究方法与新进展》
[1] 2013年,上海市科技进步奖一等奖 [2] 2015年,中国电力建设科学技术进步奖 [3] 2017年,上海市科技进步奖二等奖 [4] 2019年,中国电力建设科学技术进步奖二等奖 [5] 2020年,福建省科技进步奖三等奖 [6] 2022年,第三届中国城市轨道交通科技创新创业大赛创新奖 [7] 2022年,华夏建设科学技术奖一等奖 [8] 2022年,中国交通运输协会科技进步二等奖 [9] 2023年,河南省科技进步一等奖
[1] 中国土木工程学会土力学及岩土工程分会青年工作委员会,副主任委员(2019-至今) [2] 中国建筑学会建筑施工分会基坑工程技术部,委员(2019-至今). [3] 中国土木工程学会土力学及岩土工程分会桩基础专业委员会,委员(2023-至今) [4] 国际土力学及岩土工程学会个人会员,会员(2013-至今)
三人行必有我师。欢迎立志基坑工程、智能建造、海上风电的同学加入,共同进步! 每年招收博士1-2名;硕士2-3名。
2023年 博士生:闫凯,syed mujtaba hussaine 硕士生:王超,胡隆浩 2022年 博士生:周涛 硕士生:张琳妮,黄展赫 2021年 博士生:王顺苇,皇甫皝 硕士生:刘凯,周晟 2020年 硕士生:孙建国,王伟,syed mujtaba hussaine 2019年 博士生:张沛云 硕士生:周涛,朱孟玺 2018年 硕士生:陈炜,林剑鸿 2017年 硕士生:黄苏斌,王乐 2016年 硕士生:康兴宇,李偲 2015年 硕士生:李杰 2014年 硕士生:李婉
1.安徽省高速公路总公司(2009),根式锚碇基础的理论分析与数值模拟.(主要参与人) |
![]() ![]() |
上海市四平路1239号 021-65981011
合乐hl8新版的版权所有:同济大学土木工程学院地下建筑与工程系 合乐hl8新版的技术支持:苏迪科技